metal-organic compounds

Acta Crystallographica Section C Crystal Structure Communications ISSN 0108-2701

Hydrogen bonds in the framework of bis{2-[bis(2-aminoethyl)amino]ethanol}nickel(II) diperchlorate

Jiang Xia,^a Wei-Yin Sun,^a Yan Xu,^a Kai-Bei Yu^b and Wen-Xia Tang^a*

^aCoordination Chemistry Institute, State Key Laboratory of Coordination Chemistry, Nanjing University, Nanjing 210093, People's Republic of China, and ^bAnalysis Center, Chengdu Branch of Chinese Academy of Science, Chengdu 610041, People's Republic of China Correspondence e-mail: wxtang@netra.nju.edu.cn

Received 7 July 2000 Accepted 18 October 2000

The title molecule, $[Ni(C_6H_{17}N_3O)_2](ClO_4)_2$, possesses a crystallographic centre of symmetry at the Ni^{II} position. The coordination geometry around the Ni^{II} atom is distorted octahedral, consisting of six N atoms from two tripodal polyamine ligands, while the ethanol O atoms of the ligands remain uncoordinated. The crystal packing shows two-dimensional layers and an infinite three-dimensional framework which is stabilized by a hydrogen-bonded network.

Comment

Non-redox-active metals such as Ni^{II} and Zn^{II} are potentially of interest as hydrolytic cleaving agents of DNA, and their reactivity in model systems may lead to functional DNA cleaving molecules. Metal-polyamine complexes of Ni^{II} or Zn^{II} are frequently used as models for hydrolases. Among the polyamine ligands designed, tripodal polyamines are of special interest owing to their implication in a wide variety of biochemical and supramolecular systems (Mao et al., 1993; Anderegg & Gramlich, 1994; Murthy & Karlin, 1993; Lu et al., 1998). Some reported Ni^{II}-tripodal polyamine complexes exhibit very high hydrolytic activity towards phosphate esters and are potential artificial DNA-cut agents (De Rosch & Trogler, 1990; Tafesse et al., 1993). In the course of our work on the synthesis of metal-asymmetric tripodal heteropolyamine complexes, we obtained a new 1:2 Ni^{II}L complex, (I), with a structure of firstly infinite two-dimensional layers, then an infinite three-dimensional framework stabilized by a hydrogen-bond network.

As depicted in Fig. 1, the Ni^{II} atom is located at the symmetry centre and exhibits a slightly distorted octahedral

geometry consisting of six N atoms from two tripodal polyamine ligands. Four primary amine N atoms form the equatorial plane in which the Ni^{II} atom lies almost in the middle with equal Ni^{II}-N distances [Ni^{II}-N2 = Ni^{II}-N2(-x, -y, -z) = 2.122 (2) Å and Ni^{II}-N3 = Ni^{II}-N3(-x, -y, -z) = 2.129 (2) Å], while the apical N atom (tertiary amine N atom) is a little bit further from the central Ni^{II} atom $[Ni^{II}-N1 =$ $Ni^{II} - N1(-x, -y, -z) = 2.191 (2) \text{ Å}].$ All the $N - Ni^{II} - N$ bond angles are in the range $82.32(9)-91.17(10)^{\circ}$. The ClO₂O₃O₄O₅ and Cl'O₂'O₃'O₄'O₅' perchlorate anions are disordered, with occupancy factors of 0.50. Six kinds of hydrogen bonds occur in the structure. A hydrogen bond between the ethanol O1 atom and the amine N3 atom of an adjacent ligand $[N3-H3A\cdotsO1(\frac{1}{2}-x, -\frac{1}{2}+y, \frac{1}{2}-z): N3\cdotsO1$ 3.11 Å and $N3-H3A\cdotsO1$ 155°] is responsible for the formation of the two-dimensional sheet-like $Ni^{II}L_2$ cation polymers which spread along the $(1,0,\overline{1})$ plane to form an

The molecular structure of (I) showing 30% probability displacement ellipsoids and atom-numbering scheme. H atoms have been omitted for clarity. [Symmetry code: (i) -x, -y, -z.]

Figure 2

A view of the two-dimensional network along the $(1,0,\overline{1})$ plane. Unrelated H atoms and perchlorate anions have been omitted for clarity.

Figure 3

Packing diagram viewed down the b axis, showing the three-dimensional framework.

infinite network (see Fig. 2). Three kinds of additional hydrogen bonds exist inside the layer between the N atoms of the amine pods and the perchlorate anions: N2- $H2A \cdots O3(-x, -y, -z), N2 \cdots O3 3.16 \text{ Å and } N2 - H2A - O3$ 161° ; N3-H3B···O4(-x, -y, -z), N3···O4 3.09 Å and $N3-H3B\cdots O4\ 155^{\circ}; N3-H3B\cdots O4'(-x, -y, -z), N3\cdots O4'$ 3.04 Å and N3-H3B···O4' 171°. The other two kinds of hydrogen bonds $[O1-H1\cdots O2(1 + x, y, z), O1\cdots O2 2.9 \text{ Å}$ and $O1 - H1 \cdots O2 \ 168^{\circ}$; $O1 - H1 \cdots O2'(1 + x, y, z)$, O1 - O2'3.04 Å and O1-H1-O2' 162°] between the ethanol O atom and the perchlorate anions crosslink the layers into one threedimensional framework, as is depicted in Fig. 2.

Experimental

The title compound was synthesized by mixing the ligand 2-[bis(2aminoethyl)amino]ethanol (0.147 g, 1 mmol) and Ni^{II}(ClO₄)₂·6H₂O (0.366 g, 1 mmol) in water. Purple crystals were obtained upon evaporation of the solvent.

Crystal data

-	
$[Ni(C_6H_{17}N_3O)_2](ClO_4)_2$	$D_x = 1.648 \text{ Mg m}^{-3}$
$M_r = 552.06$	Mo $K\alpha$ radiation
Monoclinic, $P2_1/n$	Cell parameters from 25
a = 9.0260 (10) Å	reflections
b = 12.623 (2) Å	$\theta = 2.95 - 16.23^{\circ}$
c = 10.6830 (10) Å	$\mu = 1.173 \text{ mm}^{-1}$
$\beta = 113.900 (10)^{\circ}$	T = 298 (2) K
V = 1112.8 (2) Å ³	Prism, purple
Z = 2	$0.50 \times 0.44 \times 0.32 \text{ mm}$
Data collection	
Siemens P4 diffractometer	$R_{\rm int} = 0.016$
ω scans	$\theta_{\rm max} = 25.50^{\circ}$
Absorption correction: empirical	$h = 0 \rightarrow 10$
(North et al., 1968)	$k = 0 \rightarrow 15$
$T_{\min} = 0.598, T_{\max} = 0.687$	$l = -12 \rightarrow 11$
2397 measured reflections	3 standard reflections
2061 independent reflections	every 97 reflections
1700 reflections with $I > 2\sigma(I)$	intensity decay: 2.25%

Table 1

Selected geometric parameters (Å, °).

Ni N2	2 122 (2)	Ni N1	2 101 (2)
Ni-N3	2.122 (2)	M-M	2.191 (2)
N2-Ni-N3 N2-Ni-N1 ⁱ	91.17 (10) 97.68 (9)	N3-Ni-N1 ⁱ	98.18 (9)

Symmetry code: (i) -x, -y, -z.

Table 2

Hydrogen-bonding geometry (A	\ , °]).
------------------------------	---------------	----

$D-\mathrm{H}\cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$O1-H1\cdots O2^i$	0.82 (3)	2.09 (3)	2.895 (14)	168 (5)
$O1-H1\cdots O2'^i$	0.82 (3)	2.25 (3)	3.041 (18)	162 (4)
$N2-H2A\cdots O3^{ii}$	0.90	2.29	3.156 (9)	161
N3-H3A···O1 ⁱⁱⁱ	0.90	2.28	3.113 (4)	154
$N3-H3B\cdots O4^{ii}$	0.90	2.25	3.089 (10)	155
N3-H3 B ···O4' ⁱⁱ	0.90	2.15	3.038 (14)	171

Symmetry codes: (i) 1 + x, y, z; (ii) -x, -y, -z; (iii) $\frac{1}{2} - x, y - \frac{1}{2}, \frac{1}{2} - z$.

Refinement

Refinement on F^2
$R[F^2 > 2\sigma(F^2)] = 0.037$
$wR(F^2) = 0.105$
S = 1.064
2061 reflections
192 parameters
H atoms constrained
$w = 1/[\sigma^2(F_o^2) + (0.0669P)^2]$
+ 0.1837P]
where $P = (F_o^2 + 2F_c^2)/3$

 $(\Delta/\sigma)_{\rm max} = 0.001$ $\Delta \rho_{\rm max} = 0.59 \text{ e } \text{\AA}^{-3}$ $\Delta \rho_{\rm min} = -0.39 \ {\rm e} \ {\rm \AA}^{-3}$ Extinction correction: SHELXL97 (Sheldrick, 1997) Extinction coefficient: 0.0079 (18)

Data collection: XSCANS (Siemens, 1994); cell refinement: XSCANS; data reduction: SHELXTL (Sheldrick, 1990); program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

This research was supported by the National Nature Science Foundation of China.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: DE1158). Services for accessing these data are described at the back of the journal.

References

Anderegg, G. & Gramlich, V. (1994). Helv. Chim. Acta, 77, 685-690.

De Rosch, M. A. & Trogler, W. C. (1990). Inorg. Chem. 29, 2409-2416.

Lu, Z. L., Duan, C. Y., You, X. Z., Zhou, Z. Y. & Mak, T. C. W. (1998). J. Coord. Chem. 44, 151-161.

Mao, Z. W., Fu, D. G., Hang, Q. W., Tang, W. X. & Yu, K. B. (1993). J. Chem. Soc. Dalton Trans. p. 3169-3173.

Murthy, N. N. & Karlin, K. D. (1993). Chem. Commun. p. 1236.

North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-159.

Sheldrick, G. M. (1990). SHELXTL-PC User Manual. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.

Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.

Siemens (1994). XSCANS User's Manual. Version 2.1. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.

Tafesse, F., Massoud, S. S. & Milburn, R. M. (1993). Inorg. Chem. 32, 1864-1865.